80 research outputs found

    Chronotopic maps in human supplementary motor area

    Get PDF
    Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear. Here, in two experiments using ultrahigh-field 7-Tesla (7T) functional magnetic resonance imaging (fMRI), we show that in the medial premotor cortex (supplementary motor area [SMA]) of the human brain, neural units tuned to different durations are orderly mapped in contiguous portions of the cortical surface so as to form chronomaps. The response of each portion in a chronomap is enhanced by neighboring durations and suppressed by nonpreferred durations represented in distant portions of the map. These findings suggest duration-sensitive tuning as a possible neural mechanism underlying the recognition of time and demonstrate, for the first time, that the representation of an abstract feature such as time can be instantiated by a topographical arrangement of duration-sensitive neural populations

    Multi-object Data Integration in the Study of Primary Progressive Aphasia

    Get PDF
    This article focuses on a multi-modal imaging data application where structural/anatomical information from grey matter (GM) and brain connectivity information in the form of a brain connectome network from functional magnetic resonance imaging (fMRI) are available for a number of subjects with different degrees of primary progressive aphasia (PPA), a neurodegenerative disorder (ND) measured through a speech rate measure on motor speech loss. The clinical/scientific goal in this study becomes the identification of brain regions of interest significantly related to the speech rate measure to gain insight into ND pathways. Viewing the brain connectome network and GM images as objects, we develop a flexible joint object response regression framework of network and GM images on the speech rate measure. A novel joint prior formulation is proposed on network and structural image coefficients in order to exploit network information of the brain connectome, while leveraging the topological linkages among connectome network and anatomical information from GM to draw inference on brain regions significantly related to the speech rate measure. The principled Bayesian framework allows precise characterization of the uncertainty in ascertaining a region being actively related to the speech rate measure. Our framework yields new insights into the relationship of brain regions with PPA, offering deeper understanding of neuro-degeneration pathways for PPA.National Science Foundation (DMS-2220840 and DMS-2210672), National Institutes of Health (NINDS R01NS050915, NIDCD K24DC015544, NIA P50AG023501

    Investigation of memory, executive functions, and anatomic correlates in asymptomatic FMR1 premutation carriers

    Get PDF
    AbstractFragile X–associated tremor/ataxia syndrome (FXTAS) is a late-onset movement disorder associated with FMR1 premutation alleles. Asymptomatic premutation (aPM) carriers have preserved cognitive functions, but they present subtle executive deficits. Current efforts are focusing on the identification of specific cognitive markers that can detect aPM carriers at higher risk of developing FXTAS. This study aims at evaluating verbal memory and executive functions as early markers of disease progression while exploring associated brain structure changes using diffusion tensor imaging. We assessed 30 aPM men and 38 intrafamilial controls. The groups perform similarly in the executive domain except for decreased performance in motor planning in aPM carriers. In the memory domain, aPM carriers present a significant decrease in verbal encoding and retrieval. Retrieval is associated with microstructural changes of the white matter (WM) of the left hippocampal fimbria. Encoding is associated with changes in the WM under the right dorsolateral prefrontal cortex, a region implicated in relational memory encoding. These associations were found in the aPM group only and did not show age-related decline. This may be interpreted as a neurodevelopmental effect of the premutation, and longitudinal studies are required to better understand these mechanisms

    Neural correlates of abnormal sensory discrimination in laryngeal dystonia

    Get PDF
    AbstractAberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder

    Comparison of cannabinoid concentrations in oral fluid and whole blood between occasional and regular cannabis smokers prior to and after smoking a cannabis joint

    Get PDF
    A cross-over controlled administration study of smoked cannabis was carried out on occasional and heavy smokers. The participants smoked a joint (11% Δ9-tetrahydrocannabinol (THC)) or a matching placebo on two different occasions. Whole blood (WB) and oral fluid (OF) samples were collected before and up to 3.5h after smoking the joints. Pharmacokinetic analyses were obtained from these data. Questionnaires assessing the subjective effects were administered to the subjects during each session before and after the smoking time period. THC, 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) were analyzed in the blood by gas chromatography or liquid chromatography (LC)-tandem mass spectrometry (MS/MS). The determination of THC, THCCOOH, cannabinol (CBN), and Δ9-tetrahydrocannabinolic acid A (THC-A) was carried out on OF only using LC-MS/MS. In line with the widely accepted assumption that cannabis smoking results in a strong contamination of the oral cavity, we found that THC, and also THC-A, shows a sharp, high concentration peak just after smoking, with a rapid decrease in these levels within 3h. No obvious differences were found between both groups concerning THC median maximum concentrations measured either in blood or in OF; these levels were equal to 1,338 and 1,041μg/L in OF and to 82 and 94μg/L in WB for occasional and heavy smokers, respectively. The initial WB THCCOOH concentration was much higher in regular smokers than in occasional users. Compared with the occasional smokers, the sensation of confusion felt by the regular smokers was much less while the feeling of intoxication remained almost unchanged. Figure Time profiles of THC, 11-OH-THC, and THCCOOH in whole blood for occasional (a) and heavy cannabis smokers (b

    Network anatomy in logopenic variant of primary progressive aphasia

    Get PDF
    The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis

    Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA

    Get PDF
    Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neuro-degeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neuro-degeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention
    corecore